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Quantitative characteristics of the degree of roughness of

A,.I.Raychenko¥*

metal powder particles, assumed to be convex and of equal
disperseness, determined from the scattering of light of
wavelength shorter than the size of surface irregularities
are derived, with formulas for the scattering indicatrices
in diffraction, reflection, and absorption. The diffraction

part of the scattering is used as dispersity control of the

9

investigated particles, MR<£)}{:E:}{C?«L/‘

In practical powder metallurgy the profile of the powder particles is often
studied experimentally'ﬁhdér the optical or electron microscope [see, for in-
stance, Bibl.(1)]. In this paper, we will establish the possibility of intro-
ducing objective quantitative characteristics describing the degree of rough-
ness of the powder particles involved, by making use of the varying scattering
power of the surface of solids with varying number of surface irregularities of
sizes several times as great as the wavelength of the radiation employed., It
should be remembered, in this connection, that the powders compared here have
particles with similar "rough" shapes, but of different degree of roughness,

Let us assume for simplicity that the particles of the powders under study

are convex and substantially of the same disperseness, If visible light is

* Institute of Materials Study, Academy of Sciences, Ukrainian SSR,
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used to examine the ordinary powders used in powder metallurgy, then the rela-

2ra
tion x ® 1 will hold (where x =

, & = particle radius, A = wavelength of
the light); in other words, the approximation of geometric optics will obtain.
It is well known that light incident on any object undergoes diffraction, re-
flection (primary or after a series of refractions), and absorption. Let us
analyze each of these phenomena and see the results of their study.

1. Diffraction. If the incident light is considered a plane wave and we
view the diffraction figure at a distance far greater than the dimensions of the
scattering object, we have the case of Fraunhofer diffraction. The intensity

of the diffracted light is determined by the formula (Bibl.2):

di G*
I = s T Thee 11D, ¢ % (l)
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where di is the quantity of radiant energy incident (as a result of diffraction
at the particie) on the elementary area dS perpendicular to the ray; G is the
area of the greatest cross section of the scattering particle perpendicular to
the incident light; r is the distance from the particle to the elementary area
dS; I, is the intensity of the incident light; D(8, ©) is a function describing
(with an accuracy to within factors independent of the polar angle 8 and the
azimuth o) the amplitude of the diffracted wave, If the shape of the particles
is close to spherical, then the amplitude distribution of the scattered light /70
will be close to the law

DG, 9= = (2)

where J, (z) is a Bessel function.

As indicated by eq,(2), in this case the amplitude (and intensity) of the

2



diffracted wave will not depend on the azimuth, We note that the difference
between the diffraction figure given here and that given by eq.(l), taking ac-
count of eq.(2), can serve as a criterion of the deviation of the particles
from spherical shape. For this purpose, for instance, we might use the ratio
of the maxima in the second and first diffraction rings. Let us evaluate the
minimum distance between object and screen that will permit the first dark ring
(i.e., intensity minimum) to appear in tre area cut out by the primary beam.

The first root of Jy (2z) reads

Since the diffraction pattern is concentrated at very small 6, we will re-

place sin © by the argument
ah=06lam .

{8, is the angle at which the appearance of the first dark ring is expected),
Hence 8; = 0,61 -%—, Let the linear dimension of the transverse incident beam
be of the order of 4. Then the required minimum distance R; will obey the in-
equality

6,R; > 1, 0.61 —:—;— R, >1,

hence

X TV 3)

If, for instance, £ =1 em, a = 1004, A = 0.5 4, then Ry 2 30 cm.

It is wellknown that diffraction does not depend on the physical nature of
the object nor on the physical state of its surface, but is determined ex-
clusively by the geometry of the cross section of the object in the path of the
incident light, The fact that the objects being compared consist of particles

of the same "rough" shapes can therefore be checked by the distribution of in-



tensity in the diffracted ray,

2, Reflection, For convex particles considerably greater in linear dimen-
sions than the wavelength A, the law of reflection from spherical particles
will hold (Bibl.2). If the powder examined consisted of ideally reflecting
spherical particles, then the diagonal elements of the scattering matrix would

be nonzero and would be expressed by the formlas (Bibl.2)

S840 = i 5 o i 22, i (w)

SR

where T is the angle between the straight line running from the point at which
the incident ray meets the surface of the sphere facing the ray, and the tan-/71
gent plane to the sphere at that point, while 8 = 2r is the angle of scattering

(Fig.1).

Fig.l Geometry of Reflection of Light from
the Surface of a Spherical Particle
0',0" - direction of incident light; ABllotom -
same, of incident rays; DE - trace of plane tan-
gent to the sphere at the point of incidence of
the ray B; BC - reflected ray; OG -~ line indi-
cating direction of reflected ray and passing
through the center of the particle (BC!0G),
The angles are marked on the sketch.

Fguation (L) is valid for spherical particles of a substance with Fresnel
reflection coefficients equal in absolute value to unity. For the case of a
metal sphere, the components of the scattering matrix are obtained on multiply-

L



ing S5;(8) and 53(8) of eq.(4) by the corresponding reflection coefficients: ry
for polarization perpendicular to the plane of scattering and r; parallel to
the plane of scattering., Hence, we obtain the expression for the intensity of
scattering of natural light:

.1 a2 f
=g nlsinp b (5)

To obtain the angular intensity distribution [eq.(5)] , we must find the
angular dependence of |ry|® and |rz|®. It is well known that, over a wide range
of wavelengths of electromagnetic radiation (including the luminous wavelengths),

metals have a complex refractive index

where both nt' and n" are of the order of unity in the visible spectrum region.
To calculate the required squares of the moduli of the reflection coefficients,
we must use generalized Fresnel formulas for media with complex reflection co-

efficients [cf., for instance, (Bibl.3)]. Remembering that, in the range of

interest here, the magnetic permeability is unity, these formulas will have the

form
/T — cosip — 17 s o
. l | — cos*t — } mt—cos® - £
g T-=cos*t = | m®— cos"t * (7)
I V m? —cos*t — m® V oot
: V m* — cos*t -- m? l/l — cos?t (8)

(where cos® is used everywhere as the angular quantity, to facilitate the
forthcoming transition from T to the scattering angle 6 ).
Substituting eq.(6) into eqs.(7) and (8) leads to the following expres-

sions:

i f‘—-eos’f~2nnz .

VT — costpsedb
Vit—cosit— ) n* —n° —cos*t — 2n'n" T (9)




o VT = —costt — SR — B P
I e ey v W
- VAT =W —coT — ' -+ |/ T—cos® i

The square of the modulus |r |® = rym* is obtained on multiplying eq.(9) by /72

its complex conjugate

| (11)

An analogous operation must be performed on ra. Unwieldy expressions,

omitted here, lead to the following relations:

' : A (12)
2. 1 :
| where inl= B,
Ary l—cos§ , : 1
B‘}= s ,/in"-‘r—n"-——-—(lop cos&)]’.-{-'in"n":F
i V -—cos& ]/{n —n ———(l—cose) ~-4n"n">g
v .\ 1 (13)
/ R — "t —— (i + cosb) Nl
</ A (14)
I i/f’l —n —-——(:——cos&)]“-!—*in"n" b
e 05)
where L
} /[n —n —-—(l “+coshG)*- dn’'n™ ..:__l_:T)CiS_(Z.[(n'*_n'=)a+
+ 4n"*n’ ]:FVI—-—cow [/ nt—n- '—‘(1 = cos B)]® - 4n™ " x
n nt— n"’—-—(l cosﬂ)
x { (v —n) i
v
(16)
(17)



[in egs.(13), (14), (16), (17) the minus sign relates to A,, Ap, and the plus
sign to B,;, B respectively],
The scattering indicatrix may be characterized by the angular dependence

of the quantity:

4t 7 1 |
H:‘.*___' S JL a
FT =Tl | (18)
B i

The above relations must be considered more or less true for smooth re- /73
flecting particles, However, if the surface of these particles is covered by a
considerable number of irregularities of a size comparable with the wavelength
of the radiation used, then the scattering of the incident light by the part-
icles will be diffuse, and allowance must be made for this by an appropriate
factor, For example, if the diffuse reflection obeys the Lambert law, then the
factor

fy (8) =‘L1(sin6—6cosﬁ)‘ .

1

! (19)

must be used, If, instead, it is determined by the Seelinger law, then the

factor to be applied will be (Bibl.ki)

8 o
vt ——*@t %:’«m!mu‘ (20)

fs®=1—c

e

It should be remembered that egs.(19) and (20) give so-called "unnormed"
laws of diffuse reflection and therefore permit an investigation of the form of
the indicatrix but by no means of the absolute values of H(8) ¢ f(8). This
should satisfy us, however, since the criteria proposed will be the ratios of
the quantities H(8),

H@=HEf,6) | (21)

and B e ,
? He () =H@) [g6) (22)



at any two angles 8, without depending on the constant factors by which fi (8)
and fy (8 ) may have been multiplied, Numerical tables corresponding to each of

the two laws (19) and (20) are given elsewhere (Bibl.lL).

As an example, we calculated three scattering indicatrices for iron powder
with fairly coarse particles (x » 1), at monochromatic unpolarized light of
wavelength A = 0,668 p, The refractive index in this case (Bibl.2) was m =
=1,70 - 1.84 i,

Figure 2 shows all three indicatrices (without the diffractional part). No
allowance has been made for the end effects (Bibl.2). The diagram indicates
that iron particles with a smooth surface scatter almost isotropically in the
back hemisphere (8 = 90°), while scattering in the front hemisphere (8 < 90°)
increases substantially, reaching a maximum at 8 = 90°. The diagram also shows
(at half-scale) the scattering indicatrices of the same iron powder particles
with a surface that diffusely reflects 1ight according to Larbert and according
to Seelinger. The two indicatrices resemble each other, The most substantial
differences are noted in the range of angles 4O to 80°.

Having determined the scattering indicatrices, we can then select criteria
for characterizing the surface state of the particles under examination. For

example, such a criterion might be

H (60°)
- EL 0

For a theoretical scattering indicatrix, this quantity takes the following /7L

numerical values:

Law of Mirror According to | According to
Reflection | Reflection Lambert Seelinger
O
Heo) 1.08 0.12 0.196
H(170°)




Fig.2 Scattering Indicatrices of Monochromatic
(A = 0.668 u) Unpolarized Light on Iron Powder
1 - H(®) = mirror reflection; 2 - 2H, (8) = diffuse
reflection according to Lambert; 3 - 2Hg(9) =
= diffuse reflection according to Seelinger
3. Absorption., For x » 1, the refracted ray is completely absorbed in the
metal powder and does not participate in the formation of the diffraction pat-

tern (Bibl.2), Thus, diffraction and reflection should be taken into account,

and this has been done above,
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